Torque-Speed Curves

HT08-020, STR2
Connection: 4 leads
Drive settings: 0.42A/phase, 20000 steps/rev

HT08-021, STR2
Connection: 4 leads
Drive settings: 0.42A/phase, 20000 steps/rev
HT11-012, STR2
Connection: 4 leads
Drive settings: 1.2A/phase, 20000 steps/rev

HT11-013, STR2
Connection: 4 leads
Drive settings: 1.2A/phase, 20000 steps/rev
5014-842, STR2
Connection: 4 leads
Drive settings: 1.2A/phase, 20000 steps/rev

HT17-268, STR2
Connection: parallel
Drive settings: 1.61A/phase, 20000 steps/rev
HT17-271, STR2
Connection: parallel
Drive settings: 2.04A/phase, 20000 steps/rev

HT17-275, STR2
Connection: parallel
Drive settings: 2.04A/phase, 20000 steps/rev
HT23-595, STR2
Connection: series
Drive settings: 2.2A/phase, 20000 steps/rev

HT23-598, STR2
Connection: series
Drive settings: 2.2A/phase, 20000 steps/rev
Motor Heating

Step motors convert electrical power from the driver into mechanical power to move a load. Because step motors are not perfectly efficient, some of the electrical power turns into heat on its way through the motor. This heating is not so much dependent on the load being driven but rather the motor speed and power supply voltage. There are certain combinations of speed and voltage at which a motor cannot be continuously operated without damage.

We have characterized the recommended motors in our lab and provided a table and several curves showing the maximum duty cycle versus speed for each motor at commonly used power supply voltages. Please refer to this information when planning your application.

Please also keep in mind that a step motor typically reaches maximum temperature after 30 to 45 minutes of operation. If you run the motor for one minute then let it sit idle for one minute, that is a 50% duty cycle. Five minutes on and five minutes off is also 50% duty. However, one hour on and one hour off has the effect of 100% duty because during the first hour the motor will reach full (and possibly excessive) temperature.